
Basics of random assignment

Mauricio Romero



Basics of random assignment

Introduction

Estimation and Non-Compliance



Basics of random assignment

Introduction

Estimation and Non-Compliance



Basics of random assignment

Introduction
Getting the Average Treatment Effect (ATE)
Regression analysis of experiments

Estimation and Non-Compliance
Non-Compliance in Treatment Group Only
Two-sided non-compliance
Are LATEs Policy Relevant?



Average Treatment Effect
I Consider a program (T ) that induces two binary “potential outcomes” for each

individual i
I The untreated outcome Y0i

I The treated outcome Y1i

I The observe outcome

Yi =

{
Y1i if Ti = 1

Y0i if Ti = 0

= Y0i + (Y1i − Y0i )Ti

I The impact for any individual is δi = Y1i − Y0i

I If we were able to observe both of these outcomes for every individual, then
program evaluation would be straightforward

I The Average Treatment Effect (ATE) is

ATE = E (δi ) = E (Y1i − Y0i )



Average Treatment Effect

I But we only observe Yi

I If we compare the outcomes of treated and untreated individuals:

E (Yi |Ti = 1)− E (Yi |Ti = 0)︸ ︷︷ ︸
Observed difference

= E (Y1i |Ti = 1)− E (Y0i |Ti = 1)︸ ︷︷ ︸
average treatment effect on the treated

+

E (Y0i |Ti = 1)− E (Y0i |Ti = 0)︸ ︷︷ ︸
Selection bias

I If we randomly assign Ti then Ti is independent of Y0i and Y1i

I Thus, E (Y0i |Ti = 0) = E (Y0i |Ti = 1) and selection bias goes away

I Since E (Y1i − Y0i |Ti = 1) = E (Y1i − Y0i ), can drop the “on the treated” qualifier

E (Yi |Ti = 1)− E (Yi |Ti = 0) = E (Y1i |Ti = 1)− E (Y0i |Ti = 1)

= E (Y1i − Y0i |Ti = 1)

= E (Y1i − Y0i )︸ ︷︷ ︸
ATE
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Regression analysis of experiments

I Suppose (for now) the treatment effect is the same for everyone, then:

Yi = α︸︷︷︸
E(Y0i )

+ δ︸︷︷︸
Y1i−Y0i

Ti + εi︸︷︷︸
Y0i−E(Y0i )

I Then

E (Yi |Ti = 1) = α + δ + E (εi |Ti = 1)

E (Yi |Ti = 0) = α + E (εi |Ti = 0)

I Thus,

E (Yi |Ti = 1)− E (Yi |Ti = 0) = δ︸︷︷︸
ATE

+E (εi |Ti = 1)− E (εi |Ti = 0)︸ ︷︷ ︸
Selection bias
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Regression analysis of experiments

E (Yi |Ti = 1)− E (Yi |Ti = 0) = δ︸︷︷︸
ATE

+E (εi |Ti = 1)− E (εi |Ti = 0)︸ ︷︷ ︸
Selection bias

I E (εi |Ti = 1)− E (εi |Ti = 0) = E (Yi0|Ti = 1)− E (Yi0|Ti = 0)

I Selection bias amounts to correlation between the error and the treatment status

I Or correlation between Yi0 and the treatment status



Regression analysis of experiments

I In a simple experiment the average treatment effect is the difference in sample
means between the treatment and the control group

I This is the OLS coefficient of β in the regression

Yi = α + δTi + εi



Regression analysis of experiments

I We know that

(
α̂

δ̂

)
= (X ′X )−1X ′y

I In an RCT (or any binary treatment) context with pN units treated

I Regress the outcome on a constant and the treatment indicator Xi =
(
1 Ti

)

X =



1 T1

1 T2

1 T3
...

...
1 TpN

1 TpN+1

1 TpN+2
...

...
1 TN


=



1 1
1 1
1 1
...

...
1 1
1 0
1 0
...

...
1 0


; Y =



Y1

Y2

Y3
...

...
YpN

YpN+1

YpN+2
...

...
YN





Regression analysis of experiments

X ′X =

(
1 1 1 · · · 1 1 1 · · · 1
1 1 1 · · · 1 0 0 · · · 0

)



1 1
1 1
1 1
...

...
1 1
1 0
1 0
...

...
1 0


=

(
N pN
pN pN

)
= pN

( 1
p 1

1 1

)



Regression analysis of OLS

The formula for inverting a 2×2 matrix:(
a b
c d

)−1

=
1

ad − bc

(
d −b
−c a

)
Hence:(
pN

(
1 1
1 1

p

))−1

=
1

pN

( 1
p 1

1 1

)−1

=
1

(pN)
(

1
p − 1

) ( 1 −1
−1 1

p

)
=

1

N(1− p)

(
1 −1
−1 1

p

)



Regression analysis of experiments

X ′y =

(
1 1 1 · · · 1 1 1 · · · 1
1 1 1 · · · 1 0 0 · · · 0

)



Y1

Y2

Y3
...

...
YpN

YpN+1

YpN+2
...

...
YN


=

(∑N
i=1 Yi∑pN
i=1 Yi

)



Regression analysis of OLS

(X ′X )−1X ′y =
1

N(1− p)

(
1 −1
−1 1

p

)(∑N
i=1 Yi∑pN
i=1 Yi

)

=

 ∑N
i=1 Yi

N(1−p) −
p

pN(1−p)

∑pN
i=1 Yi

1
N(1−p)

(
−
∑N

i=1 Yi + 1
p

∑pN
i=1 Yi

)
=

(
Y

(1−p) −
p

(1−p)YT

− 1
(1−p)Y + 1

(1−p)YT

)

=

(
Y

(1−p) −
p

(1−p)YT

− 1
(1−p)Y + 1

(1−p)YT

)

=

(
1

1−p
(
pYT + (1− p)YC − pYT

)
1

(1−p)

(
−pYT − (1− p)YC + YT

))

=

(
YC

YT − YC

)



Regression analysis of OLS
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Regression analysis of OLS
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Regression analysis of OLS
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Regression analysis of OLS
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Regression analysis of experiments

I Typically add controls
Yi = α + βTi + γXi + εi

I Good controls

I Dummies for randomization strata (more on this tomorrow)

I Baseline covariates that predict the outcome

I Baseline values of outcome variables are (sometimes) most important control

I Bad controls We do not want to include:

I Controls that could be impacted by treatment
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Compliance

I Most RCTs examine programs that will not be universally adopted when offered

I Compliance: Whether someone takes the treatment when they are offered

I In the case of a new type of farming practice there will be farmers offered the
practice who do not adopt it

I In the case of a job training program there will be entrepreneurs who choose not to
attend the training

I These are the non-compliers

I Let Ci be the compliance status of individual i

I If she chooses to accept the program then Ci = 1

I If not then Ci = 0

I Two impacts: intention-to-treat (ITT) and treatment-on-the-treated (ToT)



Intention to Treat Effect

I The Intention to Treat Effect

ITT = E (Y1i |Ti = 1)− E (Y0i |Ti = 0)

I The ITT essentially ignores non-compliance: estimates the effect of ‘intending to
treat’ some units, regardless of how many take up the treatment

I Partially sidesteps compliance issues: Focus on treatment/ignore compliance

I It cannot completely escape compliance because a decreasing compliance rate will
push the ITT towards zero



Treatment Effect on the Treated

I The Treatment Effect on the Treated

ToT = E (Y1i |Ti = 1;Ci = 1)− E (Y0i |Ti = 0;Ci = 1)

I This is the treatment effect on those who actually choose to accept the treatment

I The counterfactual is those who would have accepted the treatment if
they had been offered it

I Non-compliance drives down the ITT relative to the ToT

I If a program has no spillover effect (i.e., non-compliers in the treatment area
receive no indirect effect from the treatment taking place around them), the
treatment effect on the non-compliers is 0



Treatment Effect on the Treated

There is a mechanical relationship between the ITT and ToT

ITT = E (Y1i |Ti = 1)− E (Y0i |Ti = 0)

= cE (Y1i |Ti = 1;Ci = 1) + (1− c)E (Y1i |Ti = 1;Ci = 0)−
cE (Y1i |Ti = 0;Ci = 1)− (1− c)E (Y1i |Ti = 0;Ci = 0)

= c [E (Y1i |Ti = 1;Ci = 1)− E (Y0i |Ti = 0;Ci = 1)] +

(1− c) [E (Y1i |Ti = 1;Ci = 0)− E (Y1i |Ti = 0;Ci = 0)]︸ ︷︷ ︸
zero because of no spillovers (i.e., exclusion restriction)

= ToT ∗ c

where c is the compliance rate
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Treatment Effect on the Treated

I Compliance is not typically observed in the control group!

I Estimator for the ToT given above cannot be estimated with standard data

I If we are willing to assume that there is no interference with the control group
then we can back out the ToT as ITT/c

I Standard empirical way of estimating ToT effects is to instrument actual receipt
of treatment with being offered treatment

I Run a regression with compliance as the endogeneous variable

I Being in the treatment group is the instrument

I In a regression without any other control variables, this instrumented ToT will be
exactly the ITT blown up by the inverse of the compliance rate.



Treatment Effect on the Treated

I Think of the compliance as an endogenous variable with an IV (treatment)

Ci = γ0 + γ1Ti + µi

Yi = β0 + β1Ĉi + ε

I Ĉi = c (i.e, the compliance rate in the treatment group)

I Regressing the outcome on the treated yields the ITT

I Thus, β̂1 = ITT
c = ToT
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Two-sided non-compliance

I Two-sided non-compliance:

I Individuals in the control who get treated

I Individuals in the treatment who do not comply

I In this context it is natural to think of the treatment simply as something that
boosts compliance, and not as the actual receipt of the treatment itself

I Email encouraging people to do something

I Facebook/Twitter/Google ads with information

I We can of course continue to estimate a kind of ITT in this context (difference
between the group offered the “treatment” and the group not offered)

I What we are estimating with the ITT is the impact of the intervention that
changes compliance and not the impact of the treatment itself

I If the compliance rate in the treatment and control groups is the same, we have
no experiment at all!



Local Average Treatment Effects

I The treatment and compliance possibilities define four possible cells (assuming
that the purpose of the treatment is to increase compliance):

1. Always takers: ci (Ti = 0) = ci (Ti = 1) = 1

2. Never takers: ci (Ti = 0) = ci (Ti = 1) = 0

3. Compliers: ci (Ti = 0) = 0 and ci (Ti = 1) = 1

4. Defiers: ci (Ti = 0) = 1 and ci (Ti = 1) = 0



Local Average Treatment Effects

I We are not typically interested in the impact of the intervention to boost
compliance, but rather the impact of the treatment itself

I We can instrument compliance with offering the treatment: In some ways this is
simply a standard implementation of the instrumented TOT

I Abadie and Imbens: Cannot use this instrument to understand the effect of the
promotion on “always compliers” nor on of the “defiers”

I In other words, the instrument has no first-stage for groups that were going to
comply or not comply in the absence of the promotion

I What we estimate with this technique is the Local Average Treatment Effect

I This is the impact of the actual treatment (rather than the promotion), estimated
only upon those types who were induced to comply by the promotion



Local Average Treatment Effects

I The analogy to the estimation of the ToT with one-sided non-compliance would
be to inflate the ITT estimated from a Randomized Promotion design by the
differential compliance between the treatment and control

I But in order to do this we must make an assumption stronger than the
“Non-Interference and Exclusion Restriction” assumptions already laid out

I We must add a Monotonicity assumption known as the “No Defiers” assumption

I The reason we need this assumption is precisely the heterogeneity of impacts

I Under homogeneous impacts and the exclusion restriction, if the fraction of Defiers
and Compliers in the sample were equal, we could not have a treatment effect



“No Defiers” assumption

I We set the fraction of defiers to zero: πD = 0

I Then

I Fraction of always takers: πAT = E [Ci (Ti = 0)]

I Fraction of never takers: πNT = 1− E [Ci (Ti = 1)]

I Fraction of compliers: πC = E [Ci (Ti = 1)− Ci (Ti = 0)]



Local Average Treatment Effects

I We can write the ITT as a weighted average of outcomes in the four cells:

ITT = πCE [Yi (Ti = 1;Ci = 1)− Yi (Ti = 0;Ci = 1)] +

πAT E [Yi (Ti = 1;Ci = 1)− Yi (Ti = 0;Ci = 1)]︸ ︷︷ ︸
zero by the exclusion restriction (no spillovers)

+

πNT E [Yi (Ti = 1;Ci = 0)− Yi (Ti = 0;Ci = 0)]︸ ︷︷ ︸
zero by the exclusion restriction (no spillovers)

+

πDE [Y (Ti = 1;Ci = 0)− Yi (Ti = 1;Ci = 0)]︸ ︷︷ ︸
zero by the no defier assumption

= πCE [Yi (Ti = 1;Ci = 1)− Yi (Ti = 0;Ci = 1)]
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Local Average Treatment Effects

I Problem: I can tell the fraction of compliers in the population (by comparing
uptake rates in treatment relative to the control) but I cannot tell which
individuals were induced to comply by the promotion

I This LATE may be interesting (if the promotion is a real policy that is being
considered, or is based off of price variation that we will really observe)

I ...Or may be completely artificial (if the promotion induces a group to comply
that would never comply in the native implementation of the program)



Local Average Treatment Effects

Imbens: Reporting the local average treatment effect, solely, or in combination
with bounds or point estimates for the overall average based on additional
assumptions, is thus emphatically not motivated by a claim that the local
average treatment effect is the sole or primary effect of interest. Rather, it is
motivated by a sober assessment that estimates for other subpopulations do
not have the same internal validity, and by an attempt to clarify what can be
learned from the data in the absence of identification of the population average
effect
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When are LATEs what we want to measure?

I A price randomization where the implementer is considering a range of different
prices/subsidies and the experiment includes the relevant range (this design still
only gives the marginal impact and not the impact on the whole client pool)

I Eligibility randomization ’on the bubble’ where the question answered is the
impact of extending access on the eligibility margin

I A randomized promotion intervention where a technology is universally available
but not widely adopted, so the relevant policy question is the effect of expanding
uptake through adoption-enhancing interventions



When are LATEs NOT what we want to measure?

I A price incentive randomization in a context where the product is provided by the
private market and the prices in the study will never be observed in reality

I Randomized promotion campaign where the promotion is so expensive that it
yields a group of beneficiaries who would never take the product in reality

I LATE or IV based on variation that selects an odd sample that is not
representative of the implementation population (e.g., Deaton’s earthquakes
example)



Example: Thornton (2008), The Demand for, and Impact of, Learning HIV Status

I Even with widespread HIV testing, many people choose not to learn their status

I Obvious and potentially cost-effective solution is to pay them to learn their results

I Two-sided non-compliance: 33% of those without incentives learned their HIV
status, and 21% of those with incentives did not learn their HIV status

I More complicated than a standard LATE:

I Incentives become increasingly important to compliance as distance grows

I As distance increases the two-sided LATE closer to a one-sided ToT
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